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Abstract4

In everyday life, people intuitively use space to make meaningful distinctions
between objects. In this paper, we present a novel, free-to-use on-line ex-
perimental paradigm that capitalizes on these intuitions: GRIS (Generating
Representations in Space). In GRIS experiments, participants manipulate a
set of objects (text, audio, images) and place them on canvases. Following
an introduction to the paradigm, we present three studies which demon-
strate how experiments in the GRIS paradigm can both a) replicate prior
psycholinguistic results and b) reveal nuanced insights about human and
computational representations.
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1. Introduction7

In our daily lives, we use space to make and represent meaningful rela-8

tionships between objects: we separate different kinds of clothes into different9

compartments, read menus that spatially group items on the page according10

to their broader classifications, and press elevator buttons that are verti-11

cally ordered to reflect the structure of their buildings. In these ways and12

many more, humans intuitively use space to simplify choice, perception, and13

computation (Kirsh, 1995), allowing us to navigate and represent complex14

structures and relations with ease.15

One of the primary approaches to studying space in the cognitive sci-16

ences is through its relationship with language. Previous research has shown17

that people construct mental representations that encode spatial relation-18

ships (Taylor and Tversky, 1992; Bryant, 1997; Kemmerer, 1999), and that19

these relationships are marked on a schematic level of varying detail (Talmy,20
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1983; Landau and Jackendoff, 1993; Hayward and Tarr, 1995; Tversky and21

Lee, 1998). Studies in this domain often focus on how language organizes22

our cognitive representations of objects and their locations, both in discourse23

and in the real world. Other work on the relationship between space and lan-24

guage suggests that we transfer linguistic information onto mental spaces of25

the world (consisting of information of referents, their beliefs, actions, etc.),26

which we then blend together to understand the relevant discourse (Faucon-27

nier, 1994; Sweetser, 1999; Fauconnier et al., 2007).28

In this paper, we demonstrate that an alternative perspective on the re-29

lationship between space and language is also fruitful: space as a tool to30

contextualize our understanding of language, and, more broadly, human cog-31

nition. To show the utility of this alternative perspective, we present an ex-32

perimental paradigm – GRIS (GeneratingRepresentations In Space) – which33

a) capitalizes on the way humans intuitively use space, b) approximates rep-34

resentations of language and other cognitive phenomena, and c) does so in35

a way that is easily comparable to embedding representations from compu-36

tational models, allowing us to further probe the matches and mismatches37

between humans and models. At a high level, participants in GRIS experi-38

ments can move objects (text, image, audio) onto a canvas and use space in39

a meaningful way, where information is incrementally collected about which40

objects were moved, when they were moved, and where they moved to. To41

briefly highlight our results, we demonstrate how GRIS experiments can 1)42

both replicate results from other psycholinguistic paradigms and provide fur-43

ther contextual nuance to such results, 2) develop multi-dimensional graphs44

that can be used for computational modeling, and 3) facilitate and simplify45

experimental designs that require multiple complex (pairwise) comparisons.46

More broadly, we argue that GRIS allows participants to use their natural47

intuitions about space to inform our understanding of how people represent48

various kinds of linguistic information.49

1.1. Article Organization50

In the following section, we provide further motivation for developing a51

paradigm that uses space meaningfully. In section 3, we outline the GRIS52

paradigm, introducing its key functionalities and structure. In sections 4-6,53

we present three GRIS experiments,1 demonstrating how the paradigm can a)54

1All items, data, and analysis code can be found at the following anonymized link:
https://osf.io/94gck/?view_only=1ed03a3757fe44ba9a036510be60b7c6.
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replicate prior results across a number of cognitive domains, and b) capture55

more nuanced relationships between representations than other experimental56

paradigms and computational models of linguistic structure.2 In section 7,57

we discuss the general implications of GRIS and present possible directions58

for future work. In section 8, we conclude.59

2. On Space60

2.1. Space & Psycholinguistic Paradigms61

From a design perspective, many standard psycholinguistic paradigms362

minimally engage with space: standard rating and judgment tasks often63

present an item in isolation (or near isolation) alongside a scale or a drop-64

down box, and forced-choice tasks only capture the pairwise differences be-65

tween one or two items. Some experimental paradigms do inherently use66

space as a metric for psycholinguistic effort, such as measuring how partici-67

pants’ eyes move to different locations on a screen when using eye-tracking in68

the visual world paradigm (Cooper, 1974; Tanenhaus et al., 1995), or follow-69

ing the trajectory of a participant’s mouse/cursor across the screen using a70

mouse-tracking paradigm (Freeman and Ambady, 2010; Wilcox et al., 2024)71

However, these paradigms do not fully capitalize on the possible utilities of72

space: the locations of objects in the visual world paradigm are often op-73

timized to be distinct and do not carry inherent meaning themselves, and74

mouse-tracking uses space as a proxy for processing difficulty instead of as a75

representational, organizational mechanism.76

We propose that the use of space can simplify psycholinguistic designs77

for both researchers and participants. As an example, consider a rating task78

where a participant is asked to rate the difference between item pairs on79

a scale (according to some metric), for a total of four unique items. We80

visualize two possible iterations of this experiment in Figure 1.81

In Figure 1A, participants are asked to directly measure the difference be-82

tween all possible combinations of the four items (either in one trial or across83

2In this paper, we focus on linguistic representations, though GRIS can be easily ex-
tended to approximate other kinds of cognitive structures and relationships such as in
vision or acoustics.

3As will be described later in this article, GRIS is not designed to captured on-line
processing. Accordingly, we do not elaborate on the use of space in psycholinguistic tasks
such as self-paced reading (Just et al., 1982) or (Forster et al., 2009).
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Figure 1: Sample rating tasks for four items. (A) Ratings in a pairwise comparison layout,
where the number above the arrows reflects the scalar differences between two items. (B)
Ratings in a space-motivated layout. The overall scalar ratings are identical between (A)
and (B).

several trials). For these items, participants maintain six pairwise compar-84

isons that are all in relation to one another. Alternatively, the experiment85

in Figure 1B present a version of the experiment that better capitalizes on86

human spatial intuitions: participants are asked to use space to distinguish87

between all possible combinations, where larger separation between items88

reflects larger differences. Note that the absolute value of the ratings are89

identical between both iterations of the experiment.90

While both versions require the participant to make the same number91

of (underlying) pairwise comparisons, we offer that experiment (B) is more92

informative than experiment (A), for a number of reasons. First, partici-93

pants are able to concretize the relative relations. Rather than needing to94

maintain an implicit scale of differences in experiment (A) – which may lead95

to possible inconsistencies as the number of comparisons increases – the re-96

lations between items are explicitly visualized in a manner that is easy to97

manipulate. Second, the directionality of differences is transparently coded:98

while Item 4 is one away from both Item 2 and Item 3, experiment (B) eas-99

ily captures the direction of the effects, whereas experiment (A) does not.100

Third, experiment (B) contextualizes the different items and their relative101

relations, allowing participants to quickly set the bounds of the underlying102

scale(s) that they are using to distinguish between items.103

2.2. Space & Computational Models104

Vector spaces that are generated by modern computational models of lan-105

guage are often used as proxies for human linguistic structure: for example,106
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high-dimensional vectors for the words “cat” and “dog” are typically near107

one another in computational vector spaces, whether such vectors are com-108

puted using word co-occurrence statistics (e.g., Pennington et al., 2014) or109

more complex, contextual operations (e.g., Radford et al., 2019). Accord-110

ingly, close proximity in computational vector spaces4 is often interpreted111

as human-like similarity,5 at all levels of linguistic structure, including pho-112

netic information (Parrish, 2017; Zouhar et al., 2023), phonological segments113

(Silfverberg et al., 2018), phrases (Passos et al., 2014), and others.114

However, while this interpretation about the relationship between human115

and model representations holds true generally, prior work has noted some116

mismatches: for example, model representations have been shown to occupy117

a narrow region of the embedding space (a phenomenon known as anisotropy ;118

Mimno and Thompson, 2017; Ethayarajh, 2019), have “rogue” dimensions119

that dominate similarity metrics (Timkey and van Schijndel, 2021), and fail120

to be robust to minor orthographic noise (Matthews et al., 2024). 6 Moreover,121

no current psycholinguistic methodology – to our knowledge – approximates122

human representational spaces of linguistic structure in a manner that is123

comparable to those generated by off-the-shelf computational models, making124

it difficult to align human and model representations.125

2.3. Desiderata for GRIS126

Given this overview of psycholinguistic paradigms and computational rep-127

resentations, we present the fundamental motivations behind GRIS:128

1. A flexible experimental paradigm that uses space to construct mean-129

ingful, interpretable relations between objects.130

2. A tool that allows researchers to quickly build experiments.131

3. An experimental interface that participants can intuitively use.132

4. Output data that approximates human cognitive representations that133

are easily aigned to representations from computational models.134

4We use “proximity” as a catch-all term for similarity in the vector space, given that
there are a variety of metrics – Euclidean distance, cosine similarity, Spearman’s ρ, etc. –
to determine representational similarity.

5See Apidianaki (2023) for an overview.
6Some research in activation & representation engineering (e.g., Turner et al., 2023; Wu

et al., 2024) demonstrates how these representations can be fine-tuned to perform better
on down-stream tasks; we do not discuss these approaches in detail, though we do address
them in the discussion.
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Figure 2: Sample GRIS canvases. Canvases can be blank (A), split into categories in both
cartesian dimensions (B, C) simultaneously (D) and irregularly (E), or placed under an
image (F).

3. GRIS: A Walkthrough135

The core idea of the GRIS paradigm is to provide participants with ob-136

jects that they can drag and drop onto a labeled canvas. In the following two137

subsections, we overview the structure of a GRIS experiment and demon-138

strate how participants navigate through a trial.139

3.1. Structuring a GRIS Experiment140

GRIS experiments have two fundamental components: 1) objects that141

can be placed, and 2) a canvas to place objects on.142

Objects can be text, images, or audio; these objects are distinct targets143

that can be individually moved. By default, objects are located in a reservoir144

at the bottom of the screen, though their initial positions can be changed to145

accommodate relevant research questions.146

Canvases, from a participant’s perspective, can be either blank or split147

into different categories; some sample canvases are provided in Figure 2.148

From a researcher’s perspective, canvases are built of individual, labeled can-149

vas blocks that are either square or rectangular. By default, canvas blocks150

are labeled using a four-point coordinate system (x-cat, y-cat, x-abs, y-abs),151

where the first two dimensions are used to mark the category that the block152
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belongs to, and the last two dimensions are used to mark the absolute position153

of the block on the overall canvas; note that canvas labels can be modified154

to accommodate other systems. Beyond labeling, each canvas block can be155

independently specified for height, width, and color. Finally, images can be156

overlaid on the canvas, allowing for additional designs beyond those possible157

by combinations of squares and rectangles.158

For ease of use for other researchers, we have developed the GRIS toolkit,7159

which provides instructions on how to build, run, and analyze GRIS experi-160

ments.161

3.2. Participating in a GRIS Experiment162

GRIS experiments are designed to be simple and intuitive for partici-163

pants. To explain how a participant navigates through a GRIS experiment,164

we provide a sample, partially-completed trial in Figure 3. In this sample165

trial, the participant has access to five objects – different shapes – which166

begin in the reservoir (B) below the blank canvas (A). The instructions at167

the top of the screen indicate that the participant should order the objects168

in a line, where the leftmost shapes are the “roundest” according to their169

intuitions. The participant first placed the star on the right boundary of170

the screen, then placed the oval on the left boundary; the abnormal shape171

was placed between these two shapes. Once they have placed all five ob-172

jects on the canvas, the participant will be prompted to continue to the next173

trial, though they can continue to re-arrange the objects at any point in time174

throughout the trial.175

For each drag-and-drop, GRIS collects 1) which object was moved, 2)176

the object’s original location, 3) its new location, 4) and the timestamps for177

both the initial drag and the final drop. Data are also collected about when178

each trial begins and ends, as well as the final positions for all objects at the179

conclusion of each trial.180

3.3. Interim Summary181

In summary, GRIS is a simple – yet flexible – experimental paradigm182

that can accommodate a wide variety of research questions and designs. To183

7The GRIS toolkit is publicly-available on GitHub at the following link: https:

//anonymous.4open.science/r/gris-toolkit-demo-923F/. Currently, GRIS experi-
ments are run on PC Ibex (Zehr and Schwarz, 2018), a free, on-line research platform
intended for experiments in psycholinguistics and cognitive science.

7



(A)

(B)

Order the shapes in a row based on how round they are, according to your intuitions.
The roundest shapes should be placed closer to the left.

(0, 0, 2, 10)

(0, 0, 10, 8)
(0, 0, 25, 9)

1
2

3

Figure 3: Sample of a partially-completed GRIS trial. Participants see a canvas (A) and a
reservoir of objects (B); participants do not see anything marked in green. In this example,
the objects are shapes. Participants are presented instructions – either during the trial (as
in this figure) or prior to the trial – which guide how the participant should manipulate the
objects. For each recorded drag-and-drop action, data is collected about the time/order of
that action (boxed red numbers in the figure) and both the original and new coordinates
for that object; only the dropped coordinates are presented in the figure.

validate GRIS’ effectiveness and demonstrate the kinds of analyses that it184

permits, we present a series of three experiments which capitalize on many185

of the features offered by the paradigm.186

4. Experiment 1: Sentence Acceptability187

Acceptability judgments probe what structures are (un)acceptable in a188

language: these structures can range from low-level judgments of phonolog-189

ical structure to high-level judgments of multi-sentence, multi-speaker dis-190

courses. In this section, we focus on sentence acceptability judgments in191

English.192

For explanatory purposes, consider the sentences in (1)-(3). We adopt193

standard conventions for marking degrees of acceptability and grammatical-194

ity from linguistic research, where * indicates a sentence is ungrammaticality,195

and # indicates a sentence is odd or slightly marked.196

(1) *An girls is hungry.197
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(2) Randy wanted to write a novel.198

(3) #?Want to write, Randy did a novel.199

While ungrammatical sentences like (1) are rated toward the boundaries200

of the acceptability spectrum, others display more gradient judgments: for201

example, sentence (2) is often preferred over sentence (3), even though both202

are grammatical sentences of English. Previous research primarily collects203

acceptability judgments using Likert scales (Gibson et al., 2011), forced-204

choice tasks (Mahowald et al., 2016), or response times (Konieczny, 2000).205

In isolation, such sentence acceptability judgments appear to be robust across206

experimental paradigms, suggesting that people have consistent preferences207

about the internal structure of their language (Sprouse, 2011; Sprouse et al.,208

2013). However, these measures do not always capture the relative relation-209

ship of sentence acceptability across structures. For example, people express210

consistent preferences: generally speaking, (2) > (3) > (1). But, each of these211

pairwise preferences reflects a different underlying scale: while (1) is less ac-212

ceptable than (3) and (3) is less acceptable than (2), the former distinction213

is motivated by differences in grammaticality, while the latter distinction is214

motivated by differences in frequency and syntactic complexity.215

Moreover, isolated syntactic judgments may also conflate degrees of ac-216

ceptability: a rating of 3 for one construction may not be comparable to217

a rating of 3 for another construction, even though the ratings are identi-218

cal. Capturing the contextual organization of syntactic acceptability across219

phenomena would help us understand the broader organization of human220

language understanding and cognition.221

In this study, we use GRIS to replicate large-scale sentence acceptability222

judgments from prior work, while also showing how the acceptability differ-223

ence between sentence pairs can strongly vary depending on the context that224

they appear in.225

4.1. Design & Procedure226

4.1.1. Stimuli227

All stimuli were drawn from Sprouse et al. (2013), which randomly sam-228

pled informal (i.e. not experimentally-tested) acceptability judgments of En-229

glish sentence pairs from Linguistic Inquiry, a well-established journal in230

theoretical linguistics. After sampling these sentence pairs, Sprouse et al.231

(2013) collected acceptability ratings for each sentence within each pair to232
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test whether the informal judgments were valid for larger populations; we233

will use these ratings to confirm that our findings correlate with prior work.234

We sampled 72 pairs from the Sprouse et al. (2013) dataset. All 72 sen-235

tence pairs were classified according to the general linguistic phenomenon236

that their original paper tested; these classifications were drawn from the237

abstracts of the papers themselves. By labeling the linguistic phenomenon238

that each pair tests, we can then combine pairs of different classifications to239

understand how different syntactic phenomena influence sentence acceptabil-240

ity across structures, allowing us to obtain a broader understanding of the241

organizational preferences of acceptability judgments. Some sample classifi-242

cations of phenomena are listed below in (4):243

(4) a. Word Order:244

Fred mowed the green lawn. > Fred mowed the lawn green.8245

b. Definites:246

This is a table. > This is table.247

From this set of 72 sentence pairs, we randomly selected 24 sentence pairs248

to serve as our target pairs: all participants saw each of these 24 sentence249

pairs. To test the impact of context on making these acceptability judgments,250

the remaining 48 items were broken into two sets of 24 sentences, each of251

which was paired with the 24 example items so that each target pair could252

appear in context with different phenomena. In sum, this process led to two253

sets of 24 items with four sentences (two pairs) each.254

4.1.2. Procedure255

See Figure 4 for a sample trial for Experiment 1. Participants saw four256

sentences below a gradiently-colored canvas, where the color gradient re-257

flected a 5-point Likert scale. Participants were instructed to move the sen-258

tences from the bottom of the screen onto the canvas according to how “ac-259

ceptable” the sentences were, according to their intuitions. Participants were260

told that the “most acceptable” sentences should be placed at the top of the261

canvas (5, on a standard Likert scale), while the “least acceptable” sentences262

should be placed at the bottom (1, on a standard Likert scale). They were263

8While the example provided here does introduce a resultative construction, the pri-
mary arguments of the original paper discuss the construction’s implications on word
order.
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This is a table.

Want to write, Randy did a novel.

This is table.

MOST
ACCEPTABLE

LEAST
ACCEPTABLE

Randy wanted to write a novel.

Figure 4: Sample trial for Experiment 1. Font has been enlarged for readability.

also told that multiple sentences could occupy the same level on the scale.264

Sentence positions below the canvas were randomized for each item.265

4.1.3. Participants266

Twenty-five participants were recruited using the online research platform267

Prolific. Participants were all native speakers of English between the ages of268

18 and 55.269

4.2. Results270

4.2.1. Base Acceptability271

To measure sentence acceptability judgments within each trial, we col-272

lected the final position of all sentences once the trial was complete. We273

z -scored acceptability ratings by participant to ensure that responses were274

compared on similar scales.275

Results for Experiment 1 are visualized in Figure 5. To test whether276

unacceptable sentences were rated significantly lower than acceptable ones,277

we fit a linear mixed-effects model to the z -scored acceptability rating, with278

a fixed effect of sentence type (acceptable/unacceptable), and random in-279
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Figure 5: Base acceptability results for Experiment 1. Notches indicate 95% bootstrapped
CIs.

tercepts for participants and items.9 Participants rated the unacceptable280

sentences as significantly less acceptable than the acceptable ones (β̂ =281

-0.184, SE = 0.031, t=-58.80, p <0.001); these sentence ratings also strongly282

correlate (r=0.88) with those found by Sprouse et al. (2013).283

4.2.2. Contextual Acceptability284

In addition to the basic acceptability analyses in the previous section,285

we measured how acceptability differences varied within each target pair286

according to the classification of the context pair that was present in the287

trial. To do so, we calculated the difference between each sentence in the288

target pair, then averaged the ratings within each context classification.289

Results for contextual acceptability differences are shown in Figure 6. We290

find that some phenomena display similar levels of acceptability (< 0.4 Lik-291

ert difference) regardless of context (e.g., Agreement, Definites), while others292

show significant variation (e.g., Movement, Word Order, Clause). For exam-293

9The complete model formula was: Z-scored Rating ∼ Type + (1 | item) + (1 |
participant). The baseline was the “Acceptable” condition.
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Figure 6: Contextual acceptability results for Experiment 1. X-axis represents the classi-
fication for the target pair. Y-axis represents the classification of the context pair. Cells
indicate difference between acceptable and unacceptable sentences within each target pair;
darker colors indicate smaller differences on a 5-point Likert scale.

ple, consider the Word Order classification for the target pair from (4-a):294

Fred mowed the green lawn > Fred mowed the lawn green. When placed in295

the context of a sentence pair that modulates Definites, the difference be-296

tween the green lawn and lawn green sentences was approximately 2.1 on297

a 5-point Likert scale; but, when placed in the context of a sentence pair298

that modulates Objecthood, the difference between the green lawn and lawn299

green sentences was approximately 3.1. These varying differences have sig-300

nificant consequences on how researchers interpret acceptability judgments:301

a difference of ∼3 points on a 5-point Likert scale easily distinguishes an302

acceptable sentence (5) from an unacceptable one (2), whereas a difference303

of ∼2 points could be the distinction between a totally acceptable sentence304

(5) and a moderately acceptable one (3).305
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4.3. Discussion306

The results of this task show that GRIS can be used to reliably repli-307

cate prior experimental results involving pairwise comparisons, while also308

systematically capturing the variability of sentence acceptability in different309

contexts. More specifically, GRIS reveals how previous sentence acceptabil-310

ity judgments in isolation may not serve as reliable representations of overall311

sentence acceptability in context.312

5. Experiment 2: Category Typicality313

Category typicality assesses how “typical” an object is within a broader314

category (Rosch, 1975; Farmer et al., 2006). For example, “robins” and “spar-315

rows” are found to be more typical representations of birds than “toucans”316

and “penguins” across cognitive domains, including language (Rosch, 1975;317

Meints et al., 1999) and vision (Maxfield et al., 2014). Traditionally, category318

typicality has been measured using rating or decision tasks (Rosch, 1975),319

production tasks (Rosch et al., 1976), or inductive-reasoning tasks (Osherson320

et al., 1990), all of which ask the participant to consider a specific word in321

relation to the broader category label. Recent computational work also sug-322

gests that computational models of language may learn some aspects of cat-323

egory typicality from the statistical usage distributions of everyday language324

(Misra et al., 2021), though these analyses focus on probability estimates325

from pre-trained language models rather than representational analyses.326

In this experiment, we build a typicality-rating experiment using GRIS,327

finding that manipulating words in space both 1) replicates previous category328

typicality effects and 2) allows us to directly compare representational spaces329

between humans and models.330

5.1. Design & Procedure331

5.1.1. Stimuli332

We used eight of the original ten categories from Rosch (1975): fruits,333

vehicles, weapons, vegetables, tools, birds, sports, clothing. All items were in334

English. Each category has a list of approximately 50-60 words, where each335

word has a typicality rating that was averaged across 209 subjects; we use336

these ratings as our ground truth. To test whether the presence of different337

words modified typicality ratings, we constructed eight items that used ten338

words from each category; we did not use all of the words from Rosch (1975),339

as there would be too many words for participants to move on the screen.340
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wrestling

SPORTS

lacrosse
archery

softball

football

swimming badminton

skating

fishing
hiking

Figure 7: Sample trial for Experiment 2 (Typicality); font size enlarged to improve figure
readability. Category label is marked in the center in green.

5.1.2. Procedure341

A sample item for Experiment 2 is visualized in Figure 7. Participants342

saw a canvas with a word bank below. In the middle of the canvas was a343

bolded category label (i.e. SPORTS). Participants were told to move words344

from the bank onto the canvas according to how “typical” an example the345

word was of the category: words that were more typical examples of the346

category should be placed closer to the category label.347

5.1.3. Participants348

As in Experiment 1, twenty-five participants were recruited using the on-349

line research platform Prolific. Participants were all native English speakers350

between the ages of 18 and 55.351

5.2. Results352

As in Experiment 1, we collected the final positions for all words once353

the trial was complete. For each trial, we calculated every word’s distance354

from the center; we z-scored these distances by participant to ensure that all355

participants were comparable in how they used the space. Finally, following356
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Figure 8: Correlation results for Experiment 2. X-axis indicates the Z-scored distance
from center for a word. Y-axis indicates the original ratings from Rosch (1975).

the rating averaging from Rosch (1975), we meaned the distances for each357

word across participants.358

Experimental results are visualized in Figure 8. We find a strong corre-359

lation (r= 0.78) between the original rankings from Rosch (1975) and the360

distance of each word from its category label in our study, indicating that361

GRIS can be used to replicate prior category typicality results.362

5.2.1. Computational Analyses363

For our computational analyses, we extracted vector representations of364

words from three models: GLoVe 6B.300D (Pennington et al., 2014), BERT365

(Devlin, 2018), and GPT2 (Radford et al., 2019). For the non-contextual366

model (GLoVe), we gathered the raw vectors for both the word and the367

category label. Following Misra et al. (2021), for both of the contextual368

models (BERT & GPT2), we framed each word X with its category label Y in369

the following way: A(n) X is a typical Y.; instead of gathering the probability370

of each word X in the sentence, we extracted the vector representations of371

both the word and the label using the minicons Python package (Misra,372

2022). Approaching our computational analyses in this way allows us to373
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Figure 9: Correlation metrics between model representations and experimental results.
Each cell corresponds to the Pearson’s correlation coefficient between the models and
experimental measures on the x- and y-axes.

most directly compare the representational spaces constructed in the human374

experiment with those generated by computational models of language; our375

approach differs from that of Misra et al. (2021), in directly comparing model376

similarities to human similarity judgments rather than mapping model log-377

probabilities to human behavioral responses.378

For each of the three models, we computed the Euclidean distance be-379

tween the vectors for every word and its corresponding category label.10 We380

then calculated the Spearman’s correlation for all possible model compar-381

isons.382

Results for these multiple-correlation analyses are visualized in Figure 9.383

We find that GRIS is the only set of representations that connect a word384

to its category label in a manner that strongly correlates with the original385

rankings from Rosch (1975); the distances between words and their labels for386

GLoVe representations only weakly correlate with the original Rosch rank-387

ings, though there is a slightly stronger correlation between GloVe distances388

and our experimental data. We note that representational distances in BERT389

and GPT2 weakly correlate with one another, but fail to display any strong390

correlations with GLoVe or either set of experimental data. We also note that391

10Analyses using standardized cosine similarity and Spearman’s rank correlation coeffi-
cient were also conducted; Euclidean distance performed best in the correlation analyses.
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GRIS also has the highest average correlation coeffecient across comparisons.392

5.3. Discussion393

In this experiment, we replicated prior typicality representations for eight394

categories. Experiments 1 and 2 show how GRIS can reliably replicate prior395

results; this experiment also demonstrates how GRIS builds constructs repre-396

sentational spaces more accurately than a number of well-established compu-397

tational models. These findings differ from Misra et al. (2021), likely due to398

the fact that we are conducting representational analyses and not behavioral399

ones: while previous computational work has shown that behavioral mea-400

sures moderately align with human behavior, our work demonstrates that401

studies of human representations cannot simply rely on vectors generated by402

these models.403

6. Experiment 3: Multi-dimensional Similarity404

In the previous two experiments, we demonstrated how GRIS can be405

used to both replicate and provide further detail about prior studies. In this406

experiment, we showcase how GRIS can be used to advance new questions407

within an established literature in cognitive science: pattern recognition.408

For decades, cognitive scientists have studied how people recognize pat-409

terns across a variety of cognitive domains (Chater and Vitányi, 2003; Reed,410

1972; Edelman, 1999; Edelman and Duvdevani-Bar, 1997). We contribute to411

this literature by examining how one form of pattern recognition – similarity412

assessments – arises during language processing.413

Prior work suggests that the cognitive sources of similarity are a con-414

cept’s familiarity (strength in memory), association (relationships with other415

concepts), and inherent perceptual likeness (surface appearance); see Hiatt416

and Trafton (2017) for an overview. Linguistic similarity, broadly defined,417

has also been shown to influence pattern recognition. For example, semantic418

similarity is well-known to produce priming effects (McNamara, 2005; Neely419

et al., 1989; Shelton and Martin, 1992), and, while less studied, syntactic420

similarity has shown similar effects (Lester et al., 2017). Orthographic simi-421

larity improves recall accuracy in a probed serial-recall task (Lin et al., 2015),422

and phonological similarity has been shown to facilitate the learning of novel423

words (Papagno and Vallar, 1992).424

While each of these features contributes to overall perception of similarity425

between linguistic units, how do people balance the multiple avenues of sim-426
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Figure 10: Sample Connections puzzle (left) with categories (right); puzzle in original
format does not have colors. Colors reflect difficulty, as determined by the editors of the
publication: yellow is the easiest, green is the second-easiest, blue is the second-hardest,
and purple is the hardest.

ilarity to determine a single sense of similarity? Importantly, this research427

question would be difficult to test with standard paradigms, as it involves428

significant numbers of pair-wise comparisons that would be both costly to429

run and difficult to interpret. In this experiment, we demonstrate how the430

drag-and-drop functionality of GRIS-based experiments easily allows us to431

determine how different types of similarity are represented and prioritized432

among each other.433

6.1. Stimuli434

Materials for this experiment come from Connections, a free, publicly-435

available game hosted by The New York Times. In this game, players see a436

grid of 16 words and are told to separate the words into four distinct groups437

that are labeled; each item belongs to only one group. Importantly, each438

group of four words forms a labeled category, and these categories have vary-439

ing difficulty: yellow groups are the easiest, green groups the second-easiest,440

blue groups the second-hardest, and purple groups the most difficult.11 A441

sample item and its corresponding solution are shown in Figure 10.442

For 300 puzzles, two annotators categorized each group of words into443

one of three broader similarity categories: Semantic Association (e.g., “wet444

weather”: hail, rain, sleet, snow), World Knowledge (e.g., “NBA teams”:445

11These difficulties are suggested by The New York Times; we do not focus on whether
these difficulties are accurate, instead studying the cognitive question surrounding simi-
larity comparisons.
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Figure 11: Distribution of similarity categories by difficulty. Difficulty levels closer to 0
are considered easier.

bucks, heat, jazz, nets), and Linguistic Reference (e.g., “palindromes”: kayak,446

level, mom, race car). As visualized in Figure 11, we see that indeed some447

similarities are considered more difficult than others: semantic association448

groups tend to occupy the easier categories, world knowledge groups tend to449

occupy the middle difficulties, and abstract linguistic reference groups tend450

to occupy the most challenging difficulties.451

6.2. Design & Procedure452

6.2.1. Stimuli453

From our annotated data, we selected 10 puzzles that had at least two454

of the similarity categories. Given that we are using puzzles generated by455

the publication, we were unable to perfectly balance the different similarity456

categories across all puzzles.12457

6.2.2. Procedure458

Similar to Experiment 2, participants saw a blank canvas with a word459

bank of words below. Participants were instructed to move these words onto460

the canvas according to how similar they were; similar words should be placed461

12Instead, categories were balanced to be approximately 40% semantic association, 30%
world knowledge, and 30% linguistic reference.
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closer together. Participants were instructed to use as much of the canvas as462

they felt was appropriate.463

To train them on the task but to avoid biasing their decisions, participants464

completed two practice trials prior to the experiment where they grouped465

both shapes and numbers.466

6.2.3. Participants467

Nineteen native speakers of English between the ages of 18 and 55 were468

recruited on Prolific.469

6.3. Results470

For each trial, we collected the final position for all words. For every group471

within each trial, we computed two distance comparisons. within group472

distances were computed by calculating the average distance between every473

word within each group with other members of that same group. outside474

group distances were computed by calculating the average distance between475

every word within a group with every other word not in that group.476

Results are visualized in Figure 12. To determine how people used dis-477

tance to group similar words together, we fit a linear mixed-effects regres-478

sion model that predicted distance, with fixed effects of comparison479

(within group/outside group), category (semantic association/world ex-480

perience/linguistic reference), and their full interactions, along with random481

intercepts for participants, items, and puzzle difficulty.13 We find a main482

effect of comparison, such that within group comparisons are signifi-483

cantly closer together than outside group comparisons (β̂ = -2.323, SE =484

0.772, t=-3.263, p <0.01). Additionally, we report a significant interaction485

between comparison and category, such that semantic association486

groups clustered significantly closer together than linguistic reference487

groups in the within group comparison (β̂ = -3.085, SE = 0.884, t=-3.491,488

p <0.001).489

6.4. Discussion490

In this experiment, we showed that certain similarity patterns are easier491

to find than others. More specifically, this experiment showed that groups492

13The complete model formula was: Distance ∼ Comparison*Category + (1 | item)
+ (1 | participant) + (1 | difficulty). The baseline conditions were the outside group
and linguistic reference groups, respectively.
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Figure 12: Average distance by category for Experiment 3. Notches indicate bootstrapped
95% CIs.

of words that pattern according to semantic association are easiest to find.493

These findings may derive from the fact that semantic association requires494

less reasoning to identify possible clusters of words, compared to other, more495

abstract groupings.496

Beyond these results, we argue that the drag-and-drop paradigm of GRIS-497

based experiments works well to investigate the complex relationships be-498

tween representations and reasoning: other paradigms – including rating499

tasks, forced-choice tasks, and priming tasks – would require significantly500

less transparent pairwise comparisons to accomplish the results of this study.501

7. General Discussion502

In this paper, we have shown how GRIS allows researchers across the cog-503

nitive sciences to use space as a way of approximating human representational504

spaces, allowing experimenters to model representational spaces both within505

class (Experiment 2) and across classes (Experiment 3), while also provid-506

ing information about the relative relationships between objects on the grid507

across participants. These findings align with prior work which demonstrate508
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how similarity and difference is highly individualized (Simmons and Estes,509

2008).510

Additionally, we have shown how GRIS can the use of space can easily511

contextualize psycholinguistic findings: we found that acceptability differ-512

ences between sentence pairs can vary greatly according to the context that513

they appear in (Experiment 1). We hope that future work using GRIS can514

expand the relative comparisons between different stimuli modalities (e.g.,515

text, image, audio).516

7.1. What kinds of analyses does GRIS support?517

In this subsection, we introduce four broad categories for analyzing future518

GRIS data, each of which are tied to specific kinds of research questions.519

These broad categories are:520

1. Location-based521

2. Graph-based522

3. Timing-based523

4. Trial-based524

Location-based analyses suit questions about ordering or categorical dis-525

tinctions between objects. For example, the sample trial in Figure 3 studies526

the linear order of shapes, where each object’s position on the x-axis reflects527

the object’s relative roundness, according to the participant: as a result, an528

analysis for this sample trial would likely focus on the y-axis information for529

each object, unless otherwise specified in the question. Canvases with cate-530

gorical splits – like those in Figure 2(B)-(E) – also likely use location-based531

analyses. We demonstrated location-based analyses in Experiments 1 and 2.532

Graph-based analyses fit questions that investigate the relative relation-533

ship between objects. Given that the tool collects information about the534

individual position of each object over the course of the trial, each GRIS535

trial builds a fully-connected weighted graph, where each object is a node,536

and the distance between two objects serves as the weighted edge between537

these objects. For example, a graph-based analysis would align with an ex-538

periment involving unsupervised clustering of objects. We demonstrated a539

graph-based analysis in Experiment 3.540

Timing-based analyses address questions that involve the order of indi-541

vidual movements and how long each movement took. For example, a timing-542

based analysis could indicate which objects were most salient to participants543
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(i.e. which objects were moved first), or whether certain objects were more544

difficult to place (i.e. took longer to drop) in relation to the relevant research545

question.546

Finally, trial-based analyses address questions about participant- and547

item-level behaviors. For example, a trial-based analysis might study whether548

people how similar representational spaces are between people; an analysis549

of this kind might construct a large-scale network of object relations for each550

participant, and then apply transformations to such networks to determine551

if certain clusters emerge across participants.552

8. Why Use GRIS?553

We conclude the paper by collecting our broader arguments for how GRIS554

can help further our understanding of the human mind.555

First, GRIS relies on natural human intuitions around space to build556

contextual and interpretable approximations of cognitive representations. In557

this paper, we demonstrate three possible ways that space can be meaning-558

fully used to advance questions in the cognitive sciences; we hope that future559

work further develops this approach to understanding the mind.560

Second, as has been mentioned previously, GRIS is very flexible and can561

be used to answer a range of questions in the cognitive sciences; the paradigm562

provides a sandbox for both researchers and participants alike to play in.563

GRIS is supported for desktop, laptops, and tablets.564

Third and finally, GRIS creates multi-dimensional representations that565

are easily comparable to popular computational models of language, such566

as Large Language Models (LLMs). These representations can be used to567

further explore mismatches between humans and models to help understand568

what aspects of human cognition are not determinable from data alone.569

In summary, we note the centrality of spatial reasoning and language to570

cognition, and how unifying them can 1) make an experiment more intuitive,571

2) yield more holistic and contextually-relevant results, and 3) construct rep-572

resentations that facilitate comparisons between humans and computational573

models.574
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